Code: EE5T6
III B.Tech - I Semester - Regular/Supplementary Examinations October 2018

## LINEAR AND DIGITAL INTEGRATED CIRCUIT APPLICATIONS <br> (ELECTRICAL \& ELECTRONICS ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$

1. a) With an example explain the operation of difference amplifier.
b) Derive gain in Non-Inverting amplifier.
c) Explain the operation principle of sine wave generation.
d) Draw the circuit diagram of $2^{\text {nd }}$ order Low Pass Filter using Op-Amp?
e) Mention the advantages of Switched capacitor filters.
f) Draw the block diagram of PLL.
g) Realize full subtractor using gates.
h) Design a full adder circuit using 8X1 MUX.
i) Write the differences between combinational and sequential circuits.
j) What is race around condition?
k) Compare latch and flip flop.

## PART - B

Answer any THREE questions. All questions carry equal marks. $3 \times 16=48 \mathrm{M}$
2. a) Draw the circuit diagram of differentiator by using IC 741 and explain its operation.
b) List out the ideal specifications of an op-amp.
3. a) Using a $741 \mathrm{op}-\mathrm{amp}$ design triangular/square waveform generator to have a output frequency of 1 kHz , a triangular output amplitude of $\pm 6 \mathrm{~V}$ and a square wave output amplitude of approximately $\pm 10 \mathrm{~V}$.
b) Design a second order low pass filter at cut off frequency of 1.2 kHz
4. a) Introduce PLL with its operating principles. 8 M
b) Explain internal block diagram and operation of 555 timer.
5. a) Draw the logic diagram of BCD to Decimal Decoder and explain its operation using truth table.
b) Design 4X16 Decoder using 2X4 Decoders.
6. a) Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams.
b) Explain the realization of SR flip-flop, JK flip-flop using D flip-flop.

8 M

